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ABSTRACT

We present an analytical charge conservative large
signal modd for MODFETS, which is valid up to
mm-wave frequencies. Although the modd equations
aresimple, an excdlent accuracy in the representation
of the nonlinear e ements of the FET is achieved. The
mode was used for the successful design of a 2-stage
power amplifier for 60 GHz.

INTRODUCTION

There is an urgent need for accurate large signa
models for MODFETs which can be used for
computer aided design of monalithic integrated
nonlinear circuits operating up to the millimeter-wave
range. For large signa modes it is important to
include charge conservation to improve the modd
consistency and the convergence properties of the
nonlinear simulation [1], [2], [3]. We introduce in this
contribution an analytical large signal modd for
MODFETs which is charge conservative and contains
simple equations to represent the voltage dependent
edements of the FET very accuratdy. The modd
parameters were extracted for a PM-MODFET
(1~0.15 pm, wg=120 pm) and verified with both
small signal and large signal measurements at
different bias conditions. By performing these
measurements for devices with different gate widths,
the scaling properties of the mode were verified. The
mode was successfully used in the design of a 2-
stage power amplifier for 60-GHz achieving the
predicted performance of P« =23 dB (at 2.5 dB gain

compression) and 10 dB small signal gain in the first
design cycle.

LARGE SIGNAL MODEL

In Fig. 1 the eguivalent circuit of the large signal
mode is depicted. The intrinsic part is enclosed by
the dashed line. The current generators lgs, | g, g @nd
the bias dependent capacitances Cg and Cy are
considered as the nonlinear elementsin the model.
Bias dependent S-parameters and dc-measurements
from a PM-MODFET (1~0.15 pm, wz=120 pm)
were used for the extraction of the mode parameters.
The intrinsic dements were calculated after de-
embedding of the parasitics from measured S
parameters.

For the I and Iy current generators the diode
equation for both, the forward and reverse bias mode
was used. Equation (1) with the forward bias fitting
parameters I and n represents the diode current for
positive diode voltage.

[ Viwe []

Idiode(vdiode) = Iss% nvt ‘1% )

Forward and reverse bias mode parameters were
extracted from the gate current measured at zero
drain bias. Fig. 2 shows the simulated and measured
diode current after parameter extraction.

The drain-source current generator |y is represented
by the nonlinear equation (2), [4]. The equation
consists of 10 parameters, which are fitted to the DC-
IV-output characteristic, considering also gm and Qgs
calculated from S-parameters.
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Fig. 3 shows the comparison of the measured with
simulated data after this extraction step

In order to consider charge conservation and to model
the nonlinear capacitances Cg and Cy very accurately
we use eguation (3) for the gate charge
Differentiating Qg with respect to Vg and Vs leads
to the input capacitance Cy; (=CgtCy) and to the
transcapacitance C,, (=-Cy) respectively. A total of 9
parameters is fitted to the measured capacitances.
Theresults are depicted in Fig.4.

Qg(vgsi,vdsi) = aff, [112]+E[ﬁvgsi —o.5m/$i]

with
f, = é [n[cosh(B w)] +w (3
w= (vgsi - v1)— 050anh(CIV,q )

f,=D []]n[cosh(F V4 )] +1

VERIFICATION

The modd was implemented as a user defined model
in the MDS simulator (HP-EEsof). The equivalent
circuit in Fig. 1 enforces that the gate charge has to

be divided into two respective portions. Partition was
performed by the equations (4) proposed in [5], where
the parameters CGDSAT and DELTDS are aso
discussed.

After the extraction of the mode parameters was
completdly performed, simulated S-parameters at
different bias points were compared with measured
data. Fig. 5 shows the comparison for 4 different
operating regions of the PM-MODFET. Finally, large
signal measurements at a fundamental frequency of
25 GHz from devices with different gate width were
compared with simulated data. In Fig.6 the
comparison is depicted. Because the impedance of the
measurement system is 50 Ohm the maximal
available output power is not achieved. The
comparison demonstrates that the modd is fully
scaleable with the gate width. The modd was used to
design a 2-stage PM-MODFET power amplifier for
an operating frequency of 60 GHz with our CPW-
Library [6]. Small signal and large signal
measurements of the fabricated amplifier (Fig. 7) are
compared with the simulated data in Fig. 8 and Fig. 9
respectively. Predicted and achieved performance are
in avery good agreement.

Qgs(vgsi Vg ) = [Qg ~ CGDSAT [(vgg- Ve )] 9 (Vas ) + CODSAT Vg [0 (Ve )

. [ 3
with g, (Vdsi =05 EH + tanh DELTDS Vs %

O 3

)

Qg (Vgg- Vi ) = [Qg ~ CGDSAT V4 ] [g2(Vyq ) + CGDSAT [(vgsi ~ Vg ) 0, (Vg )
)
)

CONCLUSION

A large signal mode was introduced, which considers
charge conservation in the equation for the nonlinear
capacitances. Although the modd equations are

(4)

reatively simple, they are capable to represent the
bias dependency of the nonlinear eements very
accuratdy. Small and large signal measurements at
different bias voltages and for devices with different
gate width was used for the verification of the
extracted modd. A 2-stage PM-MODFET power
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amplifier for 60 GHz with P =23 dB (at 2.5dBm
gain compression) and 10 dB small signal gain was
successful designed wsing the large signal model.
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Fig. 3 Comparison of the simulated (line) and
measured (circles) IV-curves.
Vds :
2f 26V
E
£ 0.6V
LL
=
o 1F
2
©
5 0.6V
s
]
O
ok 26V
10 05 00 05 10
Gate Source Voltage [V]
Fig.4 The measured (squares) bias dependent

Results of parameter extraction for the capacitances are compared with simulated data (solid

line) resulting in good agment.
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Comparison of the modd (circle) with
measured (triangle) S-parameters (0.5 to 48 GHz) for
different operating regions of the MODFET with

Wg=120 pm.
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Fig. 7 Photograph of the 2-stage amplifier
(1x2 mn¥) for 60 GHz using PM-MODFETS.
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Fig.8 Measured and simulated S-parameters of
the 60 GHz amplifier. V=0V, V4=3.0 V.
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the 60 GHz amplifier: G,=10dB, P.;;=21.8 dBm,
P«=23 dBm (2.5 dB gain compression).
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